Поиск в словарях
Искать во всех

Большая советская энциклопедия - железо

 

Железо

железо
Железо (латинское Ferrum), Fe, химический элемент VIII группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо-белый металл. Элемент в природе состоит из четырех стабильных изотопов: 54Fe (5,84%), 56Fe (91,68%), 57Fe (2,17%) и 58Fe (0,31%). Историческая справка. Ж. было известно еще в доисторические времена, однако широкое применение нашло значительно позже, т. к. в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определенном уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Ж., о чем свидетельствуют его названия на языках древних народов: древнеегипетское «бени-пет» означает «небесное железо»; древнегреческое sideros связывают с латинским sidus (родительный падеж sideris) — звезда, небесное тело. В хеттских текстах 14 в. до н. э. упоминается о Ж. как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, французское fer, итальянское ferro). Способ получения Ж. из руд был изобретен в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Ж. распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришел железный век. Гомер (в 23-й песне «Илиады») рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Ж. получали по сыродутному процессу. Железную руду восстанавливали древесным углем в горне (см. Восстановление металлов), устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления — крицу ударами молота отделяли от шлака и из нее выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Ж. науглероживалась, т. е. получался чугун; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское железо» — английское pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причем такой двухстадийный процесс (см. Кричный передел) оказался более выгодным, чем сыродутный. В 12—13 вв. кричный способ был уже широко распространен. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь («домницу»), а затем и в доменную печь. В середине 18 в. в Европе начал применяться тигельный процесс получения стали, который был известен на территории Сирии еще в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в Ж. на поду пламенной отражательной печи (см. Пудлингование). Промышленный переворот 18 — начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Ж. и его сплавах. Однако все существовавшие способы производства Ж. не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества. Распространенность в природе. По содержанию в литосфере (4,65% по массе) Ж. занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Ж. принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений (см. Железные руды). Ж. — металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Ж. накапливается во многих морских и континентальных осадках, образуя осадочные руды. Важную роль в геохимии Ж. играют окислительно-восстановительные реакции — переход 2-валентного Ж. в 3-валентное и обратно. В биосфере при наличии органических веществ Fe3+ восстанавливается до Fe2+ и легко мигрирует, а при встрече с кислородом воздуха Fe2+ окисляется, образуя скопления гидроокисей 3-валентного Ж. Широко распространенные соединения 3-валентного Ж. имеют красный, желтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование — «красно-цветная формация» (красные и бурые суглинки и глины, желтые пески и т. д.). Физические и химические свойства. Значение Ж. в современной технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддается прокатке, штамповке и волочению. Способность растворять углерод и др. элементы служит основой для получения разнообразных железных сплавов. Ж. может существовать в виде двух кристаллических решеток: a- и g- объемноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910 °С устойчиво a - Fe с ОЦК-решеткой (а = 2,86645 при 20°С). Между 910°С и 1400°С устойчива g-модификация с ГЦК-решеткой (а = 3,64 ). Выше 1400°С вновь образуется ОЦК-решетка d-Fe (а = 2,94 ), устойчивая до температуры плавления (1539°С). a - Fe ферромагнитно вплоть до 769°С (точка Кюри). Модификация g-Fe и d-Fe парамагнитны. Полиморфные превращения Ж. и стали при нагревании и охлаждении открыл в 1868 Д. К. Чернов. Углерод образует с Ж. твердые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77 ), размещаются в междоузлиях кристаллической решетки металла, состоящей из более крупных атомов (атомный радиус Fe 1,26 ). Твердый раствор углерода в g-Fe наз. аустенитом, а в (a-Fe— ферритом. Насыщенный твердый раствор углерода в g- Fe содержит 2,0% С по массе при 1130°С; a-Fe растворяет всего 0,02— 0,04%С при 723°С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит — пересыщенный твердый раствор углерода в a- Fe, очень твердый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твердости и пластичности (см. Железо - углеродистые сплавы. Термическая обработка металлов). Физические свойства Ж. зависят от его чистоты. В промышленных железных материалах Ж., как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает т. н. красноломкость, фосфор (даже 10-20% Р) — хладноломкость; углерод и азот уменьшают пластичность, а водород увеличивает хрупкость Ж. (т. н. водородная хрупкость). Снижение содержания примесей до 10-7—10-9% приводит к существенным изменениям свойств металла, в частности к повышению пластичности. Ниже приводятся физические свойства Ж., относящиеся в основном к металлу с общим содержанием примесей менее 0,01% по массе: Атомный радиус 1,26 Ионные радиусы Fe2+O,80 , Fe3+O,67 Плотность (20oC) 7,874 г/см3 tпл 1539°С tkип около 3200оС Температурный коэффициент линейного расширения (20°С) 11,7·10-6 Теплопроводность (25°С) 74,04 вт/(м·К) ,177 (кал/см·сек·град) Теплоемкость Ж. зависит от его структуры и сложным образом изменяется с температурой; средняя удельная теплоемкость (0-1000oC) 640,57 дж/(кг·К) ,153 кал/ (г·град). Удельное электрическое сопротивление (20°С) 9,7·10-8ом·м 9,7·10-6ом·см Температурный коэффициент электрического сопротивления (0—100°С) 6,51·10-3 Модуль Юнга 190—210·103 Мн/м.2 (19-21·103кгс/мм2) Температурный коэффициент модуля Юнга 4·10-6 Модуль сдвига 84,0·103 Мн/м2 8,4·103кгс/мм2 Кратковременная прочность на разрыв 170-210Мн/м217-21кгс/мм2 Относительное удлинение 45—55% Твердость по Бринеллю 350—450 Мн/м2 35—45 кгс/мм2 Предел текучести 100Мн/м2 10 кгс/мм2 Ударная вязкость 300 Мн/м2 30 кгс/мм2 Конфигурация внешней электронной оболочки атома Fe 3d64s2. Ж. проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Ж.). С кислородом Ж. образует закись FeO, окись Fe2O3 и закись-окись Fe3O4 (соединение FeO с Fe2O3, имеющее структуру шпинели). Во влажном воздухе при обычной температуре Ж. покрывается рыхлой ржавчиной (Fe2O3·nH2O). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Ж. (см. Коррозия металлов). При нагревании Ж. в сухом воздухе выше 200°С оно покрывается тончайшей окисной пленкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Ж. — воронения. При нагревании в водяном паре Ж. окисляется с образованием Fe3O4 (ниже 570°С) или FeO (выше 570°С) и выделением водорода. Гидроокись Fe (OH)2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей Fe2+ в атмосфере водорода или азота. При соприкосновении с воздухом Fe (OH)2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурую гидроокись Fe (OH)3. Закись FeO проявляет основные свойства. Окись Fe2O3 амфотерна и обладает слабо выраженной кислотной функцией; реагируя с более основными окислами (например, с MgO), она образует ферриты — соединения типа Fe2O3·nMeO, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Ж., существующего в виде ферратов, например K2FeO4, солей не выделенной в свободном состоянии железной кислоты. Ж. легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды FeCl2 и FeCl3. При нагревании Ж. с серой образуются сульфиды FeS и FeS2. Карбиды Ж. — Fe3C (цементит) и Fe2C (e-карбид) — выпадают из твердых растворов углерода в Ж. при охлаждении. Fe3C выделяется также из растворов углерода в жидком Ж. при высоких концентрациях С. Азот, подобно углероду, дает с Ж. твердые растворы внедрения; из них выделяются нитриды Fe4N и Fe2N. С водородом Ж. дает лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Ж. энергично реагирует с кремнием и фосфором, образуя силициды (например, Fe3Si) и фосфиды (например, Fe3P). Соединения Ж. с многими элементами (О, S и др.), образующие кристаллическую структуру, имеют переменный состав (так, содержание серы в моносульфиде может колебаться от 50 до 53,3 ат.%). Это обусловлено дефектами кристаллической структуры. Например, в закиси Ж. часть ионов Fe2+ в узлах решетки замещена ионами Fe3+; для сохранения электронейтральности некоторые узлы решетки, принадлежавшие ионам Fe2+, остаются пустыми и фаза (вюстит) в обычных условиях имеет формулу Fe0,947O. Нормальный электродный потенциал Ж. в водных растворах его солей для реакции составляет — 0,44 в, а для реакции равен — 0,036 в. Т. о., в ряду активностей Ж. стоит левее водорода. Оно легко растворяется в разбавленных кислотах с выделением H2 и образованием ионов Fe2+. Своеобразно взаимодействие Ж. с азотной кислотой. Концентрированная HNO3 (плотность 1,45 г/см3) пассивирует Ж. вследствие возникновения на его поверхности защитной окисной пленки; более разбавленная HNO3 растворяет Ж. с образованием ионов Fe2+ или Fe3+, восстанавливаясь до MH3 или N2O и N2. Растворы солей 2-валентного Ж. на воздухе неустойчивы — Fe2+ постепенно окисляется до Fe3+. Водные растворы солей Ж. вследствие гидролиза имеют кислую реакцию. Добавление к растворам солей Fe3+ тиоцианат-ионов SCN- дает яркую кроваво-красную окраску вследствие возникновения Fe (SCN)3, что позволяет открывать присутствие 1 части Fe3+ примерно в 106 частях воды. Для Ж. характерно образование комплексных соединений. Получение и применение. Чистое Ж. получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом его окислов. Разрабатывается способ непосредственного получения Ж. из руд электролизом расплавов. Постепенно увеличивается производство достаточно чистого Ж. путем его прямого восстановления из рудных концентратов водородом, природным газом или углем при относительно низких температурах. Ж. — важнейший металл современной техники. В чистом виде Ж. из-за его низкой прочности практически не используется, хотя в быту «железными» часто называют стальные или чугунные изделия. Основная масса Ж. применяется в виде весьма различных по составу и свойствам сплавов. На долю сплавов Ж. приходится примерно 95% всей металлической продукции. Богатые углеродом сплавы (свыше 2% по массе) — чугуны, выплавляют в доменных печах из обогащенных железных руд (см. Доменное производство). Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путем окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом S, Р, О) и добавления легирующих элементов (см. Мартеновская печь, Конвертер). Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и др. элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Ж. особо ответственного назначения служат новые процессы — вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и др. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса. На основе Ж. создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Ж. и его сплавов постоянно растет. В 1971 в СССР выплавлено 89,3 млн. т чугуна и 121 млн. т стали. Л. А. Шварцман, Л. В. Ванюкова. Железо как художественный материал использовалось с древности в Египте (подставка для головы из гробницы Тутанхамона около Фив, середина 14 в. до н. э., Музей Ашмола, Оксфорд), Месопотамии (кинжалы, найденные около Кархемиша, 500 до н. э., Британский музей, Лондон), Индии (железная колонна в Дели, 415). Со времен средневековья сохранились многочисленные высокохудожественные изделия из Ж. в странах Европы (Англии, Франции, Италии, России и др.) — кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Ж. (часто со слюдяной подкладкой) отличаются плоскостными формами, четким линейно-графическим силуэтом и эффектно просматриваются на свето-воздушном фоне. В 20 в. Ж. используется для изготовления решеток, оград, ажурных интерьерных перегородок, подсвечников, монументов. Т. Л. Железо в организме. Ж. присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (т. н. концентраторы), способные накапливать его в больших количествах (например, железобактерии — до 17—20% Ж.). Почти все Ж. в организмах животных и растений связано с белками. Недостаток Ж. вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Ж., вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Ж., и растения не получают его в достаточном количестве; в кислых почвах Ж. переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Ж. заболевания растений могут наблюдаться на значительных территориях (см. Биогеохимические провинции). В организм животных и человека Ж. поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свекла). В норме человек получает с рационом 60—110 мг Ж., что значительно превышает его суточную потребность. Всасывание поступившего с пищей Ж. происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Ж.- белкового комплекса — ферритина. Основное депо Ж. в организме — печень и селезенка. За счет Ж. ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах — миоглобин, в различных тканях цитохромы и др. железосодержащие ферменты. Выделяется Ж. из организма главным образом через стенку толстых кишок (у человека около 6—10 мг в сутки) и в незначительной степени почками. Потребность организма в Ж. меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям — 0,6, взрослым — 0,1 и беременным — 0,3 мг Ж. в сутки. У животных потребность в Ж. ориентировочно составляет (на 1 кг сухого вещества рациона): для дойных коров — не менее 50 мг, для молодняка — 30—50 мг, для поросят — до 200 мг, для супоросных свиней — 60 мг. В. В. Ковальский. В медицине лекарственные препараты Ж. (восстановленное Ж., лактат Ж., глицерофосфат Ж., сульфат 2-валентного Ж., таблетки Бло, раствор яблочнокислого Ж., ферамид, гемостимулин и др.) используют при лечении заболеваний, сопровождающихся недостатком Ж. в организме (железодефицитная анемия), а также как общеукрепляющие средства (после перенесенных инфекционных заболеваний и др.). Изотопы Ж. (52Fe, 55Fe и 59Fe) применяют как индикаторы при медико-биологических исследованиях и диагностике заболеваний крови (анемии, лейкозы, полицитемия и др.). Лит.: Общая металлургия, М., 1967; Некрасов Б. В., Основы общей химии, т. 3, М., 1970; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966; Краткая химическая энциклопедия, т. 2, М., 1963; Левинсон Н. Р., Изделия из цветного и черного металла, в кн.: Русское декоративное искусство, т. 1—3, М., 1962—65; Вернадский В. И., Биогеохимические очерки. 1922—1932, М. — Л., 1940; Граник С., Обмен железа у животных и растений, в сборнике: Микроэлементы, пер. с англ., М., 1962; Диксон М., Уэбб Ф., ферменты, пер. с англ., М., 1966; Neogi P., Iron in ancient India, Calcutta, 1914; Friend J. N., Iron in antiquity, L.,1926; Frank E. B., Old French ironwork, Camb. (Mass.), 1950; Lister R., Decorative wrought ironwork in Great Britain, L., 1960.
Рейтинг статьи:
Комментарии:

См. в других словарях

1.
  (лат. Ferrum), Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847. Блестящий серебристо-белый металл. Образует полиморфные модификации; при обычной температуре устойчиво ? -Fe (кристаллическая решетка - кубическая объемноцентрированная) с плотностью 7,874 г/см3. ? -Fe вплоть до 769°С (точка Кюри) ферромагнитно; tпл 1535°С. На воздухе окисляется - покрывается рыхлой ржавчиной. По распространенности элементов в природе железо находится на 4-м месте; образует ок. 300 минералов. На долю сплавов железа с углеродом и другими элементами приходится ок. 95% всей металлической продукции (чугун, сталь, ферросплавы). В чистом виде практически не используется (в быту железными часто называются стальные или чугунные изделия). Необходимо для жизнедеятельности животных организмов; входит в состав гемоглобина. ...
Большой энциклопедический словарь
2.
  (Ferrum), Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847, металл, tпл 1535°C. Содержание в земной коре 4,65% по массе. Железо входит в состав гемоглобина. Его используют для выплавки чугуна и стали, как материал сердечников электромагнитов и якорей электромашин, для нанесения покрытий на магнитофонные ленты и т.д. ...
Современный Энциклопедический словарь
3.
  Fe (ferrum), химический элемент VIIIB подгруппы периодической системы элементов, металл, член триады железа (Fe, Co, Ni). Железо самородное редко встречается в природе, главным образом в минералах феррит, аваруит и метеоритах (т.н. метеоритное железо, которое содержит более 90% Fe). В соединениях с кислородом и другими элементами широко распространено в составе многих минералов и руд. По распространенности в земной коре (5,00%) это третий (после кремния и алюминия) элемент; считается, что земное ядро состоит в основном из железа. Основные минералы - гематит (красный железняк) Fe2O3; лимонит Fe2O3?nH2O (n = 1 - 4), содержащийся, например, в болотной руде; магнетит (магнитный железняк) Fe3O4 и сидерит FeCO3. Наиболее распространенным минералом железа, не являющимся, однако, источником его получения, является пирит (серный колчедан, железный колчедан) FeS2, который иногда называют за его желтый блеск золотом дураков или кошачьим золотом, хотя он в действительности часто содержит небольшие примеси меди, золота, кобальта и других металлов. Железо (элементное) известно и используется с доисторических времен. Первые изделия из железа, вероятно, были изготовлены из...
Энциклопедия Кольера

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины